
NAG C Library Function Document

nag_zhetrd (f08fsc)

1 Purpose

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zhetrd (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, double d[], double e[], Complex tau[], NagError *fail)

3 Description

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a

unitary similarity transformation: A ¼ QTQH .

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see
Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored;

if uplo ¼ Nag Lower, the lower triangular part of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
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On entry: the n by n Hermitian matrix A. If uplo ¼ Nag Upper, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if uplo ¼ Nag Lower,
the lower triangle of A must be stored and the elements of the array above the diagonal are not
referenced.

On exit: a is overwritten by the tridiagonal matrix T and details of the unitary matrix Q as specified
by uplo.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: d½dim� – double Output

Note: the dimension, dim, of the array d must be at least maxð1; nÞ.
On exit: the diagonal elements of the tridiagonal matrix T .

7: e½dim� – double Output

Note: the dimension, dim, of the array e must be at least maxð1; n� 1Þ.
On exit: the off-diagonal elements of the tridiagonal matrix T .

8: tau½dim� – Complex Output

Note: the dimension, dim, of the array tau must be at least maxð1; n� 1Þ.
On exit: further details of the unitary matrix Q.

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.
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7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ E, where

kEk2 � cðnÞ�kAk2;

cðnÞ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Further Comments

The total number of real floating-point operations is approximately 16
3
n3.

To form the unitary matrix Q this function may be followed by a call to nag_zungtr (f08ftc):

nag_zungtr (order,uplo,n,&a,pda,tau,&fail)

To apply Q to an n by p complex matrix C this function may be followed by a call to nag_zunmtr
(f08fuc). For example,

nag_zunmtr (order,Nag_LeftSide,uplo,Nag_NoTrans,n,p,&a,pda,
tau,&c,pdc,&fail)

forms the matrix product QC.

The real analogue of this function is nag_dsytrd (f08fec).

9 Example

To reduce the matrix A to tridiagonal form, where

A ¼

�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i

�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_zhetrd (f08fsc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Complex *a=0, *tau=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
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#define A(I,J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf("f08fsc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
pda = n;
d_len = n;
e_len = n-1;
tau_len = n-1;

/* Allocate memory */
if ( !(a = NAG_ALLOC(n * n, Complex)) ||

!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

/* Reduce A to tridiagonal form */
f08fsc(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08fsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print tridiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= n; ++i)

Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nOff-diagonal\n");
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for (i = 1; i <= n - 1; ++i)
Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");

Vprintf("\n");
END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);

return exit_status;
}

9.2 Program Data

f08fsc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08fsc Example Program Results

Diagonal
-2.2800 -0.1285 -0.1666 -1.9249

Off-diagonal
-4.3385 -2.0226 -1.8023
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