f08 — Least-squares and Eigenvalue Problems (LAPACK) f08fsc

NAG C Library Function Document
nag_zhetrd (f08fsc)

1 Purpose

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zhetrd (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, double d[], double e[], Complex tau[], NagError *fail)

3 Description

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix A to real symmetric tridiagonal form 7" by a
unitary similarity transformation: A = QTQ".

The matrix () is not formed explicitly but is represented as a product of n — 1 elementary reflectors (see
the f08 Chapter Introduction for details). Functions are provided to work with () in this representation (see
Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if uplo = Nag Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.
4: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

[NP3645/7] 108fsc.1

f08fsc

6

NAG C Library Manual

On entry: the n by n Hermitian matrix A. If uplo = Nag Upper, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if uplo = Nag_Lower,
the lower triangle of A must be stored and the elements of the array above the diagonal are not
referenced.

On exit: a is overwritten by the tridiagonal matrix 7" and details of the unitary matrix () as specified
by uplo.
pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max(1,n).

d[dim] — double Output
Note: the dimension, dim, of the array d must be at least max(1,n).

On exit: the diagonal elements of the tridiagonal matrix 7.

e[dim] — double Output
Note: the dimension, dim, of the array e must be at least max(1,n — 1).

On exit: the off-diagonal elements of the tridiagonal matrix 7.

tau[dim| — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1l,n — 1).

On exit: further details of the unitary matrix Q).

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

108fsc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08fsc

7 Accuracy

The computed tridiagonal matrix 7" is exactly similar to a nearby matrix A + F, where
1Ell, < c(n)ellAll,,

¢(n) is a modestly increasing function of n, and € is the machine precision.

The elements of 7' themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Further Comments

The total number of real floating-point operations is approximately %Tf .

To form the unitary matrix () this function may be followed by a call to nag_zungtr (f08ftc):
nag_zungtr (order,uplo,n,&a,pda,tau,&fail)

To apply @ to an n by p complex matrix C' this function may be followed by a call to nag zunmtr
(f08fuc). For example,

nag_zunmtr (order,Nag_LeftSide,uplo,Nag_NoTrans,n,p,&a,pda,
tau, &c,pdc,&fail)

forms the matrix product QC.
The real analogue of this function is nag_dsytrd (f08fec).

9 Example
To reduce the matrix A to tridiagonal form, where

—2.28 4+ 0.00¢ 1.78 —2.03¢ 2264 0.10c —0.12 4 2.53¢
1.78 +2.03¢ —1.12+0.00: 0.01 +-0.43: —1.07 4 0.86%
2.26 — 0.10¢ 0.01 —0.43: —-037+0.00: 2.31—-0.92¢

—0.12 -2.537 —1.07 — 0.86¢ 2.3140.92¢ —0.73 +0.00¢

A=

9.1 Program Text

/* nag_zhetrd (f08fsc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{
/* Scalars */
Integer i, j, n, pda, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType wuplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Complex *a=0, *tau=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

[NP3645/7] 108fsc.3

f08fsc

#define A(I,J)
order
#endif

al(I-1)*pda + J - 1]
Nag_RowMajor ;

INIT FAIL(fail);

NAG C Library Manual

Vprintf ("f08fsc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");
Vscanf ("%1ds*["\n] ",
pda = n;

d_len
e_len
tau_len

&n) ;

/* Allocate memory */

if (!(a = NAG_ALLOC(n * n, Complex)) ||
1(d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_1len, double)) ||
! (tau = NAG_ALLOC(tau_len, Complex
{

Vprintf ("Allocation failure\n");
exit_status -1;
goto END;

}

/* Read A from data file x/
Vscanf (" ' %1s ’%*[*\n] ", uplo_char);

if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;

else if (*(unsigned char #*)uplo_char ==
uplo = Nag_Upper;

else
{

Vprintf ("Unrecognised character for

)))

Nag_UploType type\n");

exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++j)
Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]).im);
¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= i; ++3)
Vscanf (" (%1f %s1f)", &A(i,j).re, &A(i,]J).im);
¥
Vscanf ("sx["\n] ");
}
/* Reduce A to tridiagonal form =*/
f08fsc(order, uplo, n, a, pda, 4, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08fsc.\n%s\n",
exit_status = 1;
goto END;
}

/* Print tridiagonal form */

Vprintf ("\nDiagonal\n") ;

for (i = 1; 1 <= n; ++1)
Vprintf ("%9.4f%s", d[i-1],

Vprintf ("\nOff-diagonal\n") ;

f08fsc.4

i%8==0 ?"\n":"

fail.message) ;

ll);

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08fsc

for (i =1; 1 <= n - 1; ++1)
Vprintf ("$9.4f%s", e[i-1], i%8==0 2"\n":" ");
Vprintf ("\n") ;
END:
if (a) NAG_FREE (a);
if (d) NAG_FREE (4d);
if (e) NAG_FREE (e);
if (tau) NAG_FREE(tau) ;

return exit_status;

9.2 Program Data

f08fsc Example Program Data

4 :Value of N

'L’ :Value of UPLO
(-2.28, 0.00)

(1.78, 2.03) (-1.12, 0.00)

(2.26,-0.10) (0.01,-0.43) (-0.37, 0.00)

(-0.12,-2.53) (-1.07,-0.86) (2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08fsc Example Program Results

Diagonal

-2.2800 -0.1285 -0.1666 -1.9249
Ooff-diagonal

-4.3385 -2.0226 -1.8023

[NP3645/7] 108fsc.5 (last)

	f08fsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	d
	e
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

