
NAG C Library Function Document

nag_zhetrd (f08fsc)

1 Purpose

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zhetrd (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, double d[], double e[], Complex tau[], NagError *fail)

3 Description

nag_zhetrd (f08fsc) reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a

unitary similarity transformation: A ¼ QTQH .

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see
Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored;

if uplo ¼ Nag Lower, the lower triangular part of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fsc

[NP3645/7] f08fsc.1



On entry: the n by n Hermitian matrix A. If uplo ¼ Nag Upper, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if uplo ¼ Nag Lower,
the lower triangle of A must be stored and the elements of the array above the diagonal are not
referenced.

On exit: a is overwritten by the tridiagonal matrix T and details of the unitary matrix Q as specified
by uplo.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: d½dim� – double Output

Note: the dimension, dim, of the array d must be at least maxð1; nÞ.
On exit: the diagonal elements of the tridiagonal matrix T .

7: e½dim� – double Output

Note: the dimension, dim, of the array e must be at least maxð1; n� 1Þ.
On exit: the off-diagonal elements of the tridiagonal matrix T .

8: tau½dim� – Complex Output

Note: the dimension, dim, of the array tau must be at least maxð1; n� 1Þ.
On exit: further details of the unitary matrix Q.

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08fsc NAG C Library Manual

f08fsc.2 [NP3645/7]



7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ E, where

kEk2 � cðnÞ�kAk2;

cðnÞ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Further Comments

The total number of real floating-point operations is approximately 16
3
n3.

To form the unitary matrix Q this function may be followed by a call to nag_zungtr (f08ftc):

nag_zungtr (order,uplo,n,&a,pda,tau,&fail)

To apply Q to an n by p complex matrix C this function may be followed by a call to nag_zunmtr
(f08fuc). For example,

nag_zunmtr (order,Nag_LeftSide,uplo,Nag_NoTrans,n,p,&a,pda,
tau,&c,pdc,&fail)

forms the matrix product QC.

The real analogue of this function is nag_dsytrd (f08fec).

9 Example

To reduce the matrix A to tridiagonal form, where

A ¼

�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i

�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_zhetrd (f08fsc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Complex *a=0, *tau=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fsc

[NP3645/7] f08fsc.3



#define A(I,J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf("f08fsc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
pda = n;
d_len = n;
e_len = n-1;
tau_len = n-1;

/* Allocate memory */
if ( !(a = NAG_ALLOC(n * n, Complex)) ||

!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

/* Reduce A to tridiagonal form */
f08fsc(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08fsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print tridiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= n; ++i)

Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nOff-diagonal\n");

f08fsc NAG C Library Manual

f08fsc.4 [NP3645/7]



for (i = 1; i <= n - 1; ++i)
Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");

Vprintf("\n");
END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);

return exit_status;
}

9.2 Program Data

f08fsc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08fsc Example Program Results

Diagonal
-2.2800 -0.1285 -0.1666 -1.9249

Off-diagonal
-4.3385 -2.0226 -1.8023

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fsc

[NP3645/7] f08fsc.5 (last)


	f08fsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	d
	e
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



